Modularity Induced Gating and Delays in Neuronal Networks
نویسندگان
چکیده
منابع مشابه
Modularity Induced Gating and Delays in Neuronal Networks
Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the rol...
متن کاملImpact of connection delays on noise-induced spatiotemporal patterns in neuronal networks.
In the present work, we investigate the nontrivial roles of independent Gaussian noise and time-delayed coupling on the synchronous dynamics and coherence property of Fitz Hugh-Nagumo neurons on small-world networks by numerical simulations. First, it is shown that an intermediate level of noise in the neuronal networks can optimally induce a temporal coherence state when the delay in the coupl...
متن کاملHow effective delays shape oscillatory dynamics in neuronal networks
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account fo...
متن کاملNetworks, dynamics, and modularity.
The identification of general principles relating structure to dynamics has been a major goal in the study of complex networks. We propose that the special case of linear network dynamics provides a natural framework within which a number of interesting yet tractable problems can be defined. We report the emergence of modularity and hierarchical organization in evolved networks supporting asymp...
متن کاملNoise-induced phase transitions in neuronal networks
Using an exactly solvable cortical model of a neuronal network, we show that, by increasing the intensity of shot noise (flow of random spikes bombarding neurons), the network undergoes first-and second-order non-equilibrium phase transitions. We study the nature of the transitions, bursts and avalanches of neuronal activity. Saddle-node and supercritical Hopf bifurcations are the mechanisms of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2016
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1004883